3.3.59 \(\int x^2 \sqrt {d+c^2 d x^2} (a+b \sinh ^{-1}(c x))^2 \, dx\) [259]

Optimal. Leaf size=291 \[ \frac {b^2 x \sqrt {d+c^2 d x^2}}{64 c^2}+\frac {1}{32} b^2 x^3 \sqrt {d+c^2 d x^2}-\frac {b^2 \sqrt {d+c^2 d x^2} \sinh ^{-1}(c x)}{64 c^3 \sqrt {1+c^2 x^2}}-\frac {b x^2 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{8 c \sqrt {1+c^2 x^2}}-\frac {b c x^4 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{8 \sqrt {1+c^2 x^2}}+\frac {x \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{8 c^2}+\frac {1}{4} x^3 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2-\frac {\sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^3}{24 b c^3 \sqrt {1+c^2 x^2}} \]

[Out]

1/64*b^2*x*(c^2*d*x^2+d)^(1/2)/c^2+1/32*b^2*x^3*(c^2*d*x^2+d)^(1/2)+1/8*x*(a+b*arcsinh(c*x))^2*(c^2*d*x^2+d)^(
1/2)/c^2+1/4*x^3*(a+b*arcsinh(c*x))^2*(c^2*d*x^2+d)^(1/2)-1/64*b^2*arcsinh(c*x)*(c^2*d*x^2+d)^(1/2)/c^3/(c^2*x
^2+1)^(1/2)-1/8*b*x^2*(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)/c/(c^2*x^2+1)^(1/2)-1/8*b*c*x^4*(a+b*arcsinh(c*x)
)*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)-1/24*(a+b*arcsinh(c*x))^3*(c^2*d*x^2+d)^(1/2)/b/c^3/(c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.25, antiderivative size = 291, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {5806, 5812, 5783, 5776, 327, 221} \begin {gather*} -\frac {b x^2 \sqrt {c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )}{8 c \sqrt {c^2 x^2+1}}+\frac {x \sqrt {c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )^2}{8 c^2}-\frac {b c x^4 \sqrt {c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )}{8 \sqrt {c^2 x^2+1}}+\frac {1}{4} x^3 \sqrt {c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )^2-\frac {\sqrt {c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )^3}{24 b c^3 \sqrt {c^2 x^2+1}}+\frac {b^2 x \sqrt {c^2 d x^2+d}}{64 c^2}+\frac {1}{32} b^2 x^3 \sqrt {c^2 d x^2+d}-\frac {b^2 \sqrt {c^2 d x^2+d} \sinh ^{-1}(c x)}{64 c^3 \sqrt {c^2 x^2+1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x])^2,x]

[Out]

(b^2*x*Sqrt[d + c^2*d*x^2])/(64*c^2) + (b^2*x^3*Sqrt[d + c^2*d*x^2])/32 - (b^2*Sqrt[d + c^2*d*x^2]*ArcSinh[c*x
])/(64*c^3*Sqrt[1 + c^2*x^2]) - (b*x^2*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/(8*c*Sqrt[1 + c^2*x^2]) - (b*
c*x^4*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/(8*Sqrt[1 + c^2*x^2]) + (x*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[
c*x])^2)/(8*c^2) + (x^3*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x])^2)/4 - (Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*
x])^3)/(24*b*c^3*Sqrt[1 + c^2*x^2])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 5776

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcS
inh[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcSinh[c*x])^(n - 1)/Sqrt[
1 + c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 5783

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*S
imp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ
[e, c^2*d] && NeQ[n, -1]

Rule 5806

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(
f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcSinh[c*x])^n/(f*(m + 2))), x] + (Dist[(1/(m + 2))*Simp[Sqrt[d + e*x^2]
/Sqrt[1 + c^2*x^2]], Int[(f*x)^m*((a + b*ArcSinh[c*x])^n/Sqrt[1 + c^2*x^2]), x], x] - Dist[b*c*(n/(f*(m + 2)))
*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]], Int[(f*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a,
 b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])

Rule 5812

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSinh[c*x])^n/(e*(m + 2*p + 1))), x] + (-Dist[f^2*((m - 1)/(c^2*
(m + 2*p + 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, x], x] - Dist[b*f*(n/(c*(m + 2*p + 1)
))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p], Int[(f*x)^(m - 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1)
, x], x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0
]

Rubi steps

\begin {align*} \int x^2 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2 \, dx &=\frac {1}{4} x^3 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2+\frac {\sqrt {d+c^2 d x^2} \int \frac {x^2 \left (a+b \sinh ^{-1}(c x)\right )^2}{\sqrt {1+c^2 x^2}} \, dx}{4 \sqrt {1+c^2 x^2}}-\frac {\left (b c \sqrt {d+c^2 d x^2}\right ) \int x^3 \left (a+b \sinh ^{-1}(c x)\right ) \, dx}{2 \sqrt {1+c^2 x^2}}\\ &=-\frac {b c x^4 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{8 \sqrt {1+c^2 x^2}}+\frac {x \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{8 c^2}+\frac {1}{4} x^3 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2-\frac {\sqrt {d+c^2 d x^2} \int \frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{\sqrt {1+c^2 x^2}} \, dx}{8 c^2 \sqrt {1+c^2 x^2}}-\frac {\left (b \sqrt {d+c^2 d x^2}\right ) \int x \left (a+b \sinh ^{-1}(c x)\right ) \, dx}{4 c \sqrt {1+c^2 x^2}}+\frac {\left (b^2 c^2 \sqrt {d+c^2 d x^2}\right ) \int \frac {x^4}{\sqrt {1+c^2 x^2}} \, dx}{8 \sqrt {1+c^2 x^2}}\\ &=\frac {1}{32} b^2 x^3 \sqrt {d+c^2 d x^2}-\frac {b x^2 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{8 c \sqrt {1+c^2 x^2}}-\frac {b c x^4 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{8 \sqrt {1+c^2 x^2}}+\frac {x \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{8 c^2}+\frac {1}{4} x^3 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2-\frac {\sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^3}{24 b c^3 \sqrt {1+c^2 x^2}}-\frac {\left (3 b^2 \sqrt {d+c^2 d x^2}\right ) \int \frac {x^2}{\sqrt {1+c^2 x^2}} \, dx}{32 \sqrt {1+c^2 x^2}}+\frac {\left (b^2 \sqrt {d+c^2 d x^2}\right ) \int \frac {x^2}{\sqrt {1+c^2 x^2}} \, dx}{8 \sqrt {1+c^2 x^2}}\\ &=\frac {b^2 x \sqrt {d+c^2 d x^2}}{64 c^2}+\frac {1}{32} b^2 x^3 \sqrt {d+c^2 d x^2}-\frac {b x^2 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{8 c \sqrt {1+c^2 x^2}}-\frac {b c x^4 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{8 \sqrt {1+c^2 x^2}}+\frac {x \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{8 c^2}+\frac {1}{4} x^3 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2-\frac {\sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^3}{24 b c^3 \sqrt {1+c^2 x^2}}+\frac {\left (3 b^2 \sqrt {d+c^2 d x^2}\right ) \int \frac {1}{\sqrt {1+c^2 x^2}} \, dx}{64 c^2 \sqrt {1+c^2 x^2}}-\frac {\left (b^2 \sqrt {d+c^2 d x^2}\right ) \int \frac {1}{\sqrt {1+c^2 x^2}} \, dx}{16 c^2 \sqrt {1+c^2 x^2}}\\ &=\frac {b^2 x \sqrt {d+c^2 d x^2}}{64 c^2}+\frac {1}{32} b^2 x^3 \sqrt {d+c^2 d x^2}-\frac {b^2 \sqrt {d+c^2 d x^2} \sinh ^{-1}(c x)}{64 c^3 \sqrt {1+c^2 x^2}}-\frac {b x^2 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{8 c \sqrt {1+c^2 x^2}}-\frac {b c x^4 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{8 \sqrt {1+c^2 x^2}}+\frac {x \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{8 c^2}+\frac {1}{4} x^3 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2-\frac {\sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^3}{24 b c^3 \sqrt {1+c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.89, size = 207, normalized size = 0.71 \begin {gather*} -\frac {-96 a^2 c x \left (1+2 c^2 x^2\right ) \sqrt {d+c^2 d x^2}+96 a^2 \sqrt {d} \log \left (c d x+\sqrt {d} \sqrt {d+c^2 d x^2}\right )+\frac {12 a b \sqrt {d+c^2 d x^2} \left (8 \sinh ^{-1}(c x)^2+\cosh \left (4 \sinh ^{-1}(c x)\right )-4 \sinh ^{-1}(c x) \sinh \left (4 \sinh ^{-1}(c x)\right )\right )}{\sqrt {1+c^2 x^2}}+\frac {b^2 \sqrt {d+c^2 d x^2} \left (32 \sinh ^{-1}(c x)^3+12 \sinh ^{-1}(c x) \cosh \left (4 \sinh ^{-1}(c x)\right )-3 \left (1+8 \sinh ^{-1}(c x)^2\right ) \sinh \left (4 \sinh ^{-1}(c x)\right )\right )}{\sqrt {1+c^2 x^2}}}{768 c^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x])^2,x]

[Out]

-1/768*(-96*a^2*c*x*(1 + 2*c^2*x^2)*Sqrt[d + c^2*d*x^2] + 96*a^2*Sqrt[d]*Log[c*d*x + Sqrt[d]*Sqrt[d + c^2*d*x^
2]] + (12*a*b*Sqrt[d + c^2*d*x^2]*(8*ArcSinh[c*x]^2 + Cosh[4*ArcSinh[c*x]] - 4*ArcSinh[c*x]*Sinh[4*ArcSinh[c*x
]]))/Sqrt[1 + c^2*x^2] + (b^2*Sqrt[d + c^2*d*x^2]*(32*ArcSinh[c*x]^3 + 12*ArcSinh[c*x]*Cosh[4*ArcSinh[c*x]] -
3*(1 + 8*ArcSinh[c*x]^2)*Sinh[4*ArcSinh[c*x]]))/Sqrt[1 + c^2*x^2])/c^3

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(617\) vs. \(2(251)=502\).
time = 2.70, size = 618, normalized size = 2.12

method result size
default \(\frac {a^{2} x \left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{4 c^{2} d}-\frac {a^{2} x \sqrt {c^{2} d \,x^{2}+d}}{8 c^{2}}-\frac {a^{2} d \ln \left (\frac {x \,c^{2} d}{\sqrt {c^{2} d}}+\sqrt {c^{2} d \,x^{2}+d}\right )}{8 c^{2} \sqrt {c^{2} d}}+b^{2} \left (-\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right )^{3}}{24 \sqrt {c^{2} x^{2}+1}\, c^{3}}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (8 x^{5} c^{5}+8 \sqrt {c^{2} x^{2}+1}\, x^{4} c^{4}+12 c^{3} x^{3}+8 c^{2} x^{2} \sqrt {c^{2} x^{2}+1}+4 c x +\sqrt {c^{2} x^{2}+1}\right ) \left (8 \arcsinh \left (c x \right )^{2}-4 \arcsinh \left (c x \right )+1\right )}{512 c^{3} \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (8 x^{5} c^{5}-8 \sqrt {c^{2} x^{2}+1}\, x^{4} c^{4}+12 c^{3} x^{3}-8 c^{2} x^{2} \sqrt {c^{2} x^{2}+1}+4 c x -\sqrt {c^{2} x^{2}+1}\right ) \left (8 \arcsinh \left (c x \right )^{2}+4 \arcsinh \left (c x \right )+1\right )}{512 c^{3} \left (c^{2} x^{2}+1\right )}\right )+2 a b \left (-\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right )^{2}}{16 \sqrt {c^{2} x^{2}+1}\, c^{3}}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (8 x^{5} c^{5}+8 \sqrt {c^{2} x^{2}+1}\, x^{4} c^{4}+12 c^{3} x^{3}+8 c^{2} x^{2} \sqrt {c^{2} x^{2}+1}+4 c x +\sqrt {c^{2} x^{2}+1}\right ) \left (-1+4 \arcsinh \left (c x \right )\right )}{256 c^{3} \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (8 x^{5} c^{5}-8 \sqrt {c^{2} x^{2}+1}\, x^{4} c^{4}+12 c^{3} x^{3}-8 c^{2} x^{2} \sqrt {c^{2} x^{2}+1}+4 c x -\sqrt {c^{2} x^{2}+1}\right ) \left (1+4 \arcsinh \left (c x \right )\right )}{256 c^{3} \left (c^{2} x^{2}+1\right )}\right )\) \(618\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b*arcsinh(c*x))^2*(c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/4*a^2*x*(c^2*d*x^2+d)^(3/2)/c^2/d-1/8*a^2/c^2*x*(c^2*d*x^2+d)^(1/2)-1/8*a^2/c^2*d*ln(x*c^2*d/(c^2*d)^(1/2)+(
c^2*d*x^2+d)^(1/2))/(c^2*d)^(1/2)+b^2*(-1/24*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/c^3*arcsinh(c*x)^3+1/512*
(d*(c^2*x^2+1))^(1/2)*(8*x^5*c^5+8*(c^2*x^2+1)^(1/2)*x^4*c^4+12*c^3*x^3+8*c^2*x^2*(c^2*x^2+1)^(1/2)+4*c*x+(c^2
*x^2+1)^(1/2))*(8*arcsinh(c*x)^2-4*arcsinh(c*x)+1)/c^3/(c^2*x^2+1)+1/512*(d*(c^2*x^2+1))^(1/2)*(8*x^5*c^5-8*(c
^2*x^2+1)^(1/2)*x^4*c^4+12*c^3*x^3-8*c^2*x^2*(c^2*x^2+1)^(1/2)+4*c*x-(c^2*x^2+1)^(1/2))*(8*arcsinh(c*x)^2+4*ar
csinh(c*x)+1)/c^3/(c^2*x^2+1))+2*a*b*(-1/16*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/c^3*arcsinh(c*x)^2+1/256*(
d*(c^2*x^2+1))^(1/2)*(8*x^5*c^5+8*(c^2*x^2+1)^(1/2)*x^4*c^4+12*c^3*x^3+8*c^2*x^2*(c^2*x^2+1)^(1/2)+4*c*x+(c^2*
x^2+1)^(1/2))*(-1+4*arcsinh(c*x))/c^3/(c^2*x^2+1)+1/256*(d*(c^2*x^2+1))^(1/2)*(8*x^5*c^5-8*(c^2*x^2+1)^(1/2)*x
^4*c^4+12*c^3*x^3-8*c^2*x^2*(c^2*x^2+1)^(1/2)+4*c*x-(c^2*x^2+1)^(1/2))*(1+4*arcsinh(c*x))/c^3/(c^2*x^2+1))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsinh(c*x))^2*(c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: expt: undefined: 0 to a negative e
xponent.

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsinh(c*x))^2*(c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral((b^2*x^2*arcsinh(c*x)^2 + 2*a*b*x^2*arcsinh(c*x) + a^2*x^2)*sqrt(c^2*d*x^2 + d), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{2} \sqrt {d \left (c^{2} x^{2} + 1\right )} \left (a + b \operatorname {asinh}{\left (c x \right )}\right )^{2}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b*asinh(c*x))**2*(c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x**2*sqrt(d*(c**2*x**2 + 1))*(a + b*asinh(c*x))**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsinh(c*x))^2*(c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c^2*d*x^2 + d)*(b*arcsinh(c*x) + a)^2*x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int x^2\,{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}^2\,\sqrt {d\,c^2\,x^2+d} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a + b*asinh(c*x))^2*(d + c^2*d*x^2)^(1/2),x)

[Out]

int(x^2*(a + b*asinh(c*x))^2*(d + c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________